Basolateral outward rectifier chloride channel in isolated crypts of mouse colon.
نویسندگان
چکیده
Single channel patch-clamp techniques were used to demonstrate the presence of outwardly rectifying chloride channels in the basolateral membrane of crypt cells from mouse distal colon. These channels were rarely observed in the cell-attached mode and, in the inside-out configuration, only became active after a delay and depolarizing voltage steps. Single channel conductance was 23.4 pS between -100 and -40 mV and increased to 90.2 pS between 40 and 100 mV. The channel permeability sequence for anions was: I(-) > SCN(-) > Br(-) > Cl(-) > NO(3)(-) > F(-)>> SO(4)(2-) approximately gluconate. In inside-out patches, the channel open probability was voltage dependent but insensitive to intracellular Ca(2+) concentration. In cell-attached mode, forskolin, histamine, carbachol, A-23187, and activators of protein kinase C all failed to activate the channel, and activity could not be evoked in inside-out patches by exposure to the purified catalytic subunit of cAMP-dependent protein kinase A. The channel was inhibited by 5-nitro-2-(3-phenylpropylamino)benzoate, 9-anthracenecarboxylic acid, and DIDS. Stimulation of G proteins with guanosine 5'-O-(3-thiotriphosphate) decreased the channel open probability and conductance, whereas subsequent addition of guanosine 5'-O-(2-thiodiphosphate) reactivated the channel.
منابع مشابه
Secretory activation of basolateral membrane Cl- channels in guinea pig distal colonic crypts.
Cell-attached recordings revealed Cl(-) channel activity in basolateral membrane of guinea pig distal colonic crypts isolated from basement membrane. Outwardly rectified currents ((gp)Cl(or)) were apparent with a single-channel conductance (gamma) of 29 pS at resting membrane electrical potential; another outward rectifier with gamma of 24 pS was also observed ( approximately 25% of (gp)Cl(or))...
متن کاملInward-rectifier potassium channels in basolateral membranes of frog skin epithelium
UNLABELLED Inward-rectifier K channel: using macroscopic voltage clamp and single-channel patch clamp techniques we have identified the K+ channel responsible for potassium recycling across basolateral membranes (BLM) of principal cells in intact epithelia isolated from frog skin. The spontaneously active K+ channel is an inward rectifier (Kir) and is the major component of macroscopic conducta...
متن کاملInward-rectifier Potassium in Basolateral Membranes of Frog Skin Epithelium Channels
Inward-rectifier K channel: using macroscopic voltage clamp and single-channel patch clamp techniques we have identified the K + channel responsible for potassium recycling across basolateral membranes (BLM) of principal cells in intact epithelia isolated from frog skin. The spontaneously active K + channel is an inward rectifier (Ke) and is the major component of macroscopic conductance of int...
متن کاملUpregulation of basolateral small conductance potassium channels (KCNQ1/KCNE3) in ulcerative colitis
BACKGROUND Basolateral K(+) channels hyperpolarize colonocytes to ensure Na(+) (and thus water) absorption. Small conductance basolateral (KCNQ1/KCNE3) K(+) channels have never been evaluated in human colon. We therefore evaluated KCNQ1/KCNE3 channels in distal colonic crypts obtained from normal and active ulcerative colitis (UC) patients. METHODS KCNQ1 and KCNE3 mRNA levels were determined ...
متن کاملNon-genomic regulation of intermediate conductance potassium channels by aldosterone in human colonic crypt cells.
BACKGROUND Aldosterone has a rapid, non-genomic, inhibitory effect on macroscopic basolateral K(+) conductance in the human colon, reducing its capacity for Cl(-) secretion. The molecular identity of the K(+) channels constituting this aldosterone inhibitable K(+) conductance is unclear. AIM To characterise the K(+) channel inhibited by aldosterone present in the basolateral membrane of human...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 279 2 شماره
صفحات -
تاریخ انتشار 2000